Machine Learning Basics Learning Machine Learning

Nils Reiter

September 26-27, 2018

Nils Reiter (CRETA)

Machine Learning Basics

Automatization

Text Analysis in the Digital Humanities

Machine Learning Concepts Classification Evaluation

Formalities and Notation

Nils Reiter (CRETA)

Section 1

Text Analysis Experiments

Nils Reiter (CRETA)

Machine Learning Basics

September 26-27, 2018 3/31

Experiment

- Reproducability
- Hypotheses about the operationalization of text phenomena
 - Linguistic: Syntax, Semantics, ...
 - Literary: Narratological categories (e.g., narrative levels), ...

Example

- Position within a sentence is indicative for the part of speech
- Meaning of a word depends on its context

Text Analysis Experiments

Corpus

Nils Reiter (CRETA)

What do we need?

- Gold standard
 - Formal, machine-readable truth
- Program, that implements a given algorithm (which operationalizes our hypotheses)
- Evaluation metric
 - Formalized comparison of annotations

What do we learn?

Directly

Prediction quality of the program on this corpus

- Indirectly
 - Insights, why the program works well (or not)
 - Estimation of the quality on other corpora
- Long term
 - Iterative improvement of the programs (e.g., in shared tasks)

Three Areas

Manual Annotation

- Annotated corpora encode language intuitions of (native) speakers
- Explicit/machine-readable encoding of text properties
- Annotation guidelines describe categories and how to handle difficult cases
 - https://sharedtasksinthedh.github.io/2017/10/01/howto-annotation/
- Automatization (see below)
- Evaluation
 - Quantification of correctness
 - Accuracy: Portion of correctly labeled instances
 - Precision/Recall/F-Score: Insight into class imbalances

Section 2

Automatization

Nils Reiter (CRETA)

Machine Learning Basics

Systems

- Predicts annotations
- Ideally: The same annotations as a human (the correct ones)
- Parameters
 - On what exactly does the program make predictions?
 - What information, criteria and features does it need?

System types

- Rule-based
- Statistical
 - Supervised
 - Unsupervised

Rule-based Systems

- Manually specified rules over certain criteria
 - HPSG grammar, XML-Parsing
- Criteria: Vocabulary from which rules are created
 - Noun: Every token, that starts with an upper case letter
 - Noun: Every token, that starts with an upper case letter and is not sentence initial

Supervised Systems

- Learn probabilities from annotated data
 - POS tagger
- More exact: Probabilities, that features X are associated with category Y
 - P(Noun|Upper case)
 - P(Noun|Upper case and not sentence initial)

Unsupervised Systems

- Predictions over features without training data and defined categories
 - topic modeling
 - clustering
- Advantage: No training data
- Disadvantage: Results often difficult to interpret

Blei et al. (2003)

Mixed systems

- Rules that are weighted on training data
- Semi-supervised
 - Annotated und not annotated data
- Bootstrapping
 - Unsupervised methods to create training data, then supervised systems

Features

- Feature extraction
 - "Translation" of the corpus into feature vectors
- Feature engineering
 - Design and implementation of feature extractors
- Linguistic features need to be determined somehow
 - ightarrow Dependencies, modularization
- Playground!

Example: Parts of Speech

Features	Data type		
Case	Binary		
Length	> 0		

Table: Features

Token	Case	L.
Der	u	3
Hund	u	4
bellt	1	5
•	?	1
Die	u	3
Katze	u	5
schnurrt	I	8
	?	1

Table: Feature extraction

Example: Parts of Speech

Feature	Data type	Token	Case	L.	S. initial
Case Length Sentence initial	Binary > 0 Binary	Der Hund bellt	u u l	3 4 5 2	Y N N
Table: Features	;	Die Katze schnurrt	u u l	3 5 8	Y N N
			?	1	Ν

Table: Feature extraction

Example: Parts of Speech

Feature	Data type	Token	Case	L.	S. initial
Case Length Sentence initial	Binary > 0 Binary	Der Hund bellt	u u l	3 4 5 2	Y N N
Introduces dependency!		Die Katze schnurrt	u u I	3 5 8	Y N N
			?	1	Ν

Table: Feature extraction

Workflow

- Goal: Predict the quality on new data
- The program cannot have seen the data, so that it's a realistic test

Section 3

Text Analysis in the Digital Humanities

Nils Reiter (CRETA)

Machine Learning Basics

September 26-27, 2018 20/31

Annotation workflow

Validation of theories (e.g., narratological)

Annotation workflow

Validation of theories (e.g., narratological)

Text processing/tools

Linguistic features for humanities phenomena

Annotation workflow

- Validation of theories (e.g., narratological)
- Text processing/tools
 - Linguistic features for humanities phenomena
- Automatic Annotation
 - "big data" investigations
 - e.g., all novels of the 19th century
 - Counteract canonization

Machine Learning Concepts

Section 4

Machine Learning Concepts

Nils Reiter (CRETA)

Machine Learning Basics

September 26-27, 2018 22/31

Two Parts

Prediction Model

How do we make predictions on data instances? (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data? (e.g. how do we create rules for assigning a part of speech tag for a word?)

Two Parts

Prediction Model

How do we make predictions on data instances? (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data?

(e.g. how do we create rules for assigning a part of speech tag for a word?)

Two Parts

Prediction Model

How do we make predictions on data instances? (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data? (e.g. how do we create rules for assigning a part of speech tag for a word?)

Nils Reiter (CRETA)

Classification

Assigning classes to objects/instances/items

Classification

Assigning classes to objects/instances/items

• Words \rightarrow parts of speech

Classification

Assigning classes to objects/instances/items

- Words \rightarrow parts of speech
- Photo portraits \rightarrow gender of the depicted person

- Assigning classes to objects/instances/items
 - ► Words → parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - Photo portraits → name of depicted person

- Assigning classes to objects/instances/items
 - ► Words → parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - ▶ Photo portraits → name of depicted person

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - ▶ Photo portraits → name of depicted person
 - ► Texts → genres

- Assigning classes to objects/instances/items
 - ► Words → parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - ► Photo portraits → name of depicted person
 - ► Texts → genres
- Prediction model: Responsible for the classification

Classification

- Assigning classes to objects/instances/items
 - ► Words → parts of speech
 - ► Photo portraits → gender of the depicted person

 - ► Texts → genres
- Prediction model: Responsible for the classification
- Many different models/algorithms available:
 - Decision trees
 - Support vector machines
 - Naïve bayes
 - Neural networks
 - Bayesian networks

• ...

Features

- Decision is based on features (= properties)
- The prediction model only sees feature values!
 - What's not encoded in a feature doesn't play a role
 - It's our job to provide useful features
 - …except when using neural networks: "deep learning"

- We always want to know how well machine learning works
- Straightforward evaluation: Comparison with a gold standard

- We always want to know how well machine learning works
- Straightforward evaluation: Comparison with a gold standard
- Most simple metric: Accuracy
 - Percentage of correctly classified instances (the higher the better)
 - Inverse: Error rate (percentage of incorrectly classified instances)

- We always want to know how well machine learning works
- Straightforward evaluation: Comparison with a gold standard
- Most simple metric: Accuracy
 - Percentage of correctly classified instances (the higher the better)
 - Inverse: Error rate (percentage of incorrectly classified instances)
- Accuracy is nice, but not enough
 - When improving systems, we want to compare our accuracy with the previous accuracy
 - When developing new systems, we want to know how difficult the task is
 - E.g., 60% accuracy when distinguishing 35 parts of speech is better than 60% accuracy when distinguishing nouns and all the rest

Baseline

Baseline

Baseline

Baseline

- Example 1: Gender of DH students
 - Task: Classify students according to their gender (Stuttgart DH class)
 - 22 of 25 students are female
 - Majority baseline: Everyone is female
 - Classification accuracy: 88% (!)

Baseline

Baseline

- Example 1: Gender of DH students
- Example 2: Gender of arbitrary Germans
 - Task: Classify a random German according to their gender
 - male: 40.7m vs. female: 41.8m
 - Random baseline: Toss a coin
 - Classification accuracy: about 50%

Baseline

Baseline

- Example 1: Gender of DH students
- Example 2: Gender of arbitrary Germans
- Example 3: Detecting nouns
 - Task: Classify words into noun and non-noun
 - Most words are not nouns
 - Majority baseline: Every word is a non-noun
 - Accuracy (in a German text): 81.8%

Typical baselines

Majority baseline

Always predict the majority class in the data set

Random baseline Make a random selection

Single feature baseline

Make a prediction based on a single, easy to extract feature (e.g., casing of words)

Why formal language?

Formal language is concise, exact and unambiguous. Slides will contain both.

Why formal language?

Formal language is concise, exact and unambiguous. Slides will contain both.

▶ Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$

Why formal language?

Formal language is concise, exact and unambiguous. Slides will contain both.

▶ Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$

▶ Data objects/instances/items: x ∈ D. x_{class} represents the class label (i.e., the target category)

Why formal language?

Formal language is concise, exact and unambiguous. Slides will contain both.

- ▶ Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$
- ▶ Data objects/instances/items: x ∈ D. x_{class} represents the class label (i.e., the target category)
- Feature set $F = \{f_1, f_2, \ldots, f_n\}$
 - \triangleright $v(f_i)$ is a set that contains all possible values of a feature
 - I.e., we know in advance which values a feature can take!

Why formal language?

Formal language is concise, exact and unambiguous. Slides will contain both.

- ▶ Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$
- ▶ Data objects/instances/items: x ∈ D. x_{class} represents the class label (i.e., the target category)
- Feature set $F = \{f_1, f_2, \ldots, f_n\}$
 - \triangleright $v(f_i)$ is a set that contains all possible values of a feature
 - I.e., we know in advance which values a feature can take!
- Feature extractor $f_i(x)$ represents the value of f_i for x

Formalities and Notation

 \sum expression variable

Formalities and Notation

References I

Blei, David, Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation". In: Journal of Machine Learning Research 3 (2003), pp. 993–1022.