What to do next
Learning Machine Learning

Nils Reiter

CRETA
CENTER FOR REFLECTED TEXT ANALYTICS

September 26-27, 2018
Overview

Using Machine Learning at Home
 Processing Text

Supervised vs. Unsupervised

Data & Annotation
 Creating Annotated Corpora
 Inter-Annotator Agreement
 Annotation Workflow

Resources
 Continue Learning
 Start Coding
Using Machine Learning at Home

Section 1

Processing Text

Supervised vs. Unsupervised

Data & Annotation
 - Creating Annotated Corpora
 - Inter-Annotator Agreement
 - Annotation Workflow

Resources
 - Continue Learning
 - Start Coding
What kind of problem do you want to solve?

- Classification: Items to classes
- Sequence labeling: Sequential items to classes
 - By taking previous decisions into account
 - Used in many NLP tasks!
- Regression: Predict numeric values
- Clustering: Data exploration
Using Machine Learning at Home

The Classes

What are the classes?

- Can humans distinguish between them clearly?
- Are there more training instances than classes?
- How specific are the classes to one document/data set?
 - Can we learn something generic from them?
- How are they distributed in the data/in the world?
The Data

- How large is the data set?
- Is it representative of the real world?
- Is it representative for the application?
Using Machine Learning at Home

The Features

Which features to use?

- Features need to be
 - Relevant for the target category
 - Your own judgement
 - Data analysis on a data sample: Association
 - Applicable to large portions of the instances
 - Extractable from the instances
 - How much time do you have?
 - How much preprocessing can you afford?
 - How reliable is the preprocessing?
- Extracting features: Main task for you
 - You’ll have to write code
Processing Text

- Languages are different
 - German vs. English vs. Chinese
Processing Text

- Languages are different
 - German vs. English vs. Chinese
- Text types are different
 - Newspaper vs. blog vs. scientific articles
Processing Text

- Languages are different
 - German vs. English vs. Chinese

- Text types are different
 - Newspaper vs. blog vs. scientific articles

- Domains are different
 - Business vs. sports
Processing Text

- Languages are different
 - German vs. English vs. Chinese
- Text types are different
 - Newspaper vs. blog vs. scientific articles
- Domains are different
 - Business vs. sports

Differences are different

- Domain: Vocabulary
- Text types: Vocabulary, syntax, perspective, ...
- Language: Syntax, vocabulary, semantics, sign systems, ...
Processing Text

Ambiguity

Time flies like an arrow
Processing Text

Ambiguity

Time flies like an arrow

- Texts/sentences/words can be ambiguous
- How many different meanings does the sentence have?
Angela saw the man with the binocular
Processing Text

Ambiguity

Angela saw the man with the binocular

- Ambiguity reflected in different syntactic readings
- PP attachment ambiguity
 - ‘see with the binocular’
 - ‘man with the binocular’
Processing Text
Processing text is hard

- NLP tools (e.g., Stanford Core NLP)
 - almost always supervised
 - trained on newspaper/Wikipedia/social media
- This may be what you need, but there’s no guarantee.
Processing text is hard

- NLP tools (e.g., Stanford Core NLP)
 - almost always supervised
 - trained on newspaper/Wikipedia/social media
- This may be what you need, but there’s no guarantee.
- Tools focus on linguistic layers (e.g., parts of speech or coreference)
 - Dependencies between layers exist!
 - PoS tagging errors lead to subsequent errors
 - This gap can be large

Reiter (2014)
Processing Text
Processing text is hard

- NLP tools (e.g., Stanford Core NLP)
 - almost always supervised
 - trained on newspaper/Wikipedia/social media

- This may be what you need, but there’s no guarantee.

- Tools focus on linguistic layers (e.g., parts of speech or coreference)
 - Dependencies between layers exist!
 - PoS tagging errors lead to subsequent errors
 - This gap can be large

- Technical text quality matters
 - ‘Garbage in, garbage out’
 - OCR is not perfect

Reiter (2014)
Supervised vs. Unsupervised

Using Machine Learning at Home
Processing Text

Supervised vs. Unsupervised

Data & Annotation
Creating Annotated Corpora
Inter-Annotator Agreement
Annotation Workflow

Resources
Continue Learning
Start Coding
Supervised vs. Unsupervised

Two strains of machine learning

Supervised Learning

- Goal: Replicate the gold standard
- Known classes
- Models trained on training data
- Classification

Unsupervised Learning

- Goal: Identify groups of 'similar' items, similarity measured via features
- Data exploration
- No gold standard, no training data
- Clustering
- Results not necessarily interpretable for humans!
Supervised vs. Unsupervised

Two strains of machine learning

Supervised Learning

▶ Goal: Replicate the gold standard
▶ Known classes
▶ Models trained on training data
→ Classification

Unsupervised Learning

▶ Goal: Identify groups of ‘similar’ items, similarity measured via features
 ▶ Data exploration
▶ No gold standard, no training data
→ Clustering
▶ Results not necessarily interpretable for humans!
Section 3

Data & Annotation

Using Machine Learning at Home
Processing Text

Supervised vs. Unsupervised

Data & Annotation
Creating Annotated Corpora
Inter-Annotator Agreement
Annotation Workflow

Resources
Continue Learning
Start Coding
Data

- Supervised ML needs (training/testing) data
- For text: Annotations!
Data

- Supervised ML needs (training/testing) data
- For text: Annotations!
- Corpus annotation
 - Tradition/established in computational linguistics
 - Explicitly marked linguistic categories
 - e.g., parts of speech (verb/noun/adjective/...
Getting Annotated Corpora

- LDC: Linguistic Data Consortium
 - https://www.ldc.upenn.edu
 - Intransparent business model ...
- ELDA: European Language Resources Association
 - http://www.elra.info
- Open Access
 - Oxford Text Archive: http://ota.ox.ac.uk
 - Deutsches Textarchiv: http://www.deutschestextarchiv.de
 - TextGrid Repository: https://textgridrep.org
Creating Annotated Corpora

- Non-trivial
 - Difficult decisions
 - Large list of special cases, exceptions
- Expensive
 - Multiple annotators
 - Supervision
- Time-consuming
 - Concentration fades quickly
Creating Annotated Corpora

- Non-trivial
 - Difficult decisions
 - Large list of special cases, exceptions
- Expensive
 - Multiple annotators
 - Supervision
- Time-consuming
 - Concentration fades quickly

⇒ Annotated data is valuable
Creating Annotated Corpora

Best Practice

- Annotation guidelines mediate between theory and annotators
 - Not every annotator needs to be an export on syntactic theory
- Parallel annotation: Multiple annotators annotate the same text
 - Allows estimation of annotation quality
 - Regularly measure inter-annotator agreement
- Iteratively improve the annotation guidelines
 - This might invalidate previous annotations!
Annotation Guidelines

- Mediator between theory and annotations
- Applicability is important
 - Self-contained
 - Clarity
 - Work of reference

Part-of-Speech Tagging Guidelines for the Penn Treebank Project

Beatrice Santorini
March 15, 1991

2 List of parts of speech with corresponding tag

Adjective—JJ

Hyphenated compounds that are used as modifiers are tagged as adjectives (JJ).

EXAMPLES: happy-go-lucky/JJ
one-of-a-kind/JJ
run-of-the-mill/JJ

Figure: Part of Speech Guidelines used in the Penn Treebank
Inter-Annotator Agreement

Motivation

- IAA expresses agreement between annotators/raters quantitatively
- Often used as an upper bound in NLP: Computers can’t be expected to perform better than human agreement
- Annotations with high IAA are considered more reliable
- Sometimes used to steer guideline/resource development
 - ‘90% solution’: Remove word senses for which annotators achieve less than 90%
 Hovy et al. (2006)
- Corpus releases should be accompanied by IAA values, to allow estimation of annotation quality
Inter-Annotator Agreement

Different Metrics

- Not all annotation tasks are the same
 - PoS tagging: Assign each word to a category
 - Only categorizing
 - Sentence splitting: Mark sentence boundaries
 - Only unitizing
 - Named entities: Select a span and assign it to a category
 - Unitizing, categorizing

- Different metrics for different tasks!

 Cohen 1960; Fleiss 1971; Fournier and Inkpen 2012; Mathet et al. 2015
Inter-Annotation Agreement

Different Metrics: Common Properties

- All metrics incorporate *observed* and *expected* agreement
- Observed agreement: Extracted from the annotations
- Expected agreement: Agreement to be expected by chance annotations
 - Indicates difficulty of the annotation task
 - Allows comparing agreement values with different numbers of categories!

Inter-Annotation Agreement

Expected Agreement

If two annotators assign word classes (noun, verb, adjective, other) by throwing a 4-sided die, they achieve a certain level of agreement (this is a categorization task).
Section 4

Resources

Using Machine Learning at Home
Processing Text

Supervised vs. Unsupervised

Data & Annotation
Creating Annotated Corpora
Inter-Annotator Agreement
Annotation Workflow

Resources
Continue Learning
Start Coding
Continue Learning

- Coursera online course
 - Andrew Ng, Stanford University
 - https://www.coursera.org/learn/machine-learning
 - Lecture and exercises, generic (not only text/language)

- Books
Start Coding

▶ You do not have to implement everything by yourself
 ▶ Frameworks and APIs are faster, more tested, better documented
▶ Python
 ▶ Natural Language Toolkit (NLTK): https://www.nltk.org
 ▶ scikit-learn http://scikit-learn.org/
 ▶ Industrial-Strength NLP https://spacy.io
▶ Java
 ▶ Weka https://www.cs.waikato.ac.nz/ml/weka/
 ▶ Mallet http://mallet.cs.umass.edu
 ▶ Apache UIMA http://uima.apache.org
 ▶ ClearTk http://cleartk.github.io/cleartk/
▶ R
 ▶ caret https://topepo.github.io/caret/

References II

