Reflected Text Analysis beyond Linguistics DGfS-CL fall school

Nils Reiter, nils.reiter@ims.uni-stuttgart.de

Sept. 9-13, 2019

Part III

Automatisation and Machine Learning

Machine Learning Basics Classification Evaluation

Formalities and Notation

Decision Trees

Evaluation (again)

Experiments

Flash forward: Evaluation

- Goal: Predict the quality on new data
- The program cannot have seen the data, so that it's a realistic test

Introduction

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data

Introduction

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data
- It's all around us
 - Stock market transactions
 - Search engines
 - Surveillance
 - Data-driven research & science
 - ...

Introduction

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data
- It's all around us
 - Stock market transactions
 - Search engines
 - Surveillance
 - Data-driven research & science
 - ► ...
- Why is it interesting for text analysis?
 - Big data analyses
 - Automatic prediction of phenomena
 - Canonisation, Euro-centrism
 - Statements about 1000 texts more convincing than abt 10
 - Insights into data
 - By inspecting features and making error analysis

Two Parts

Prediction Model

How do we make predictions on data instances? (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data? (e.g. how do we create rules for assigning a part of speech tag for a word?)

Two Parts

Prediction Model

How do we make predictions on data instances? (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data? (e.g. how do we create rules for assigning a part of speech tag for a word?)

Two Parts

Prediction Model

How do we make predictions on data instances? (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data? (e.g. how do we create rules for assigning a part of speech tag for a word?)

Classification

Assigning classes to objects/instances/items

Classification

Assigning classes to objects/instances/items
Words > parts of spaceh

• Words \rightarrow parts of speech

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - Photo portraits \rightarrow name of depicted person

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - ▶ Photo portraits → name of depicted person

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - ▶ Photo portraits → name of depicted person
 - ► Texts \rightarrow genres

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - Photo portraits → name of depicted person
 - Texts \rightarrow genres
- Prediction model: Responsible for the classification

- Assigning classes to objects/instances/items
 - Words \rightarrow parts of speech
 - Photo portraits \rightarrow gender of the depicted person
 - Photo portraits → name of depicted person
 - Texts \rightarrow genres
- Prediction model: Responsible for the classification
- Many different models/algorithms available:
 - Decision trees
 - Support vector machines
 - Naïve bayes
 - Neural networks
 - Bayesian networks

Features

- Decision is based on features (= properties)
- ► The prediction model only sees feature values!
 - What's not encoded in a feature doesn't play a role
 - It's our job to provide useful features

- We *always* want to know how well machine learning works
- Straightforward evaluation: Comparison with a gold standard

- We always want to know how well machine learning works
- Straightforward evaluation: Comparison with a gold standard
- Most simple metric: Accuracy
 - Percentage of correctly classified instances (the higher the better)
 - Inverse: Error rate (percentage of incorrectly classified instances)

- We always want to know how well machine learning works
- Straightforward evaluation: Comparison with a gold standard
- Most simple metric: Accuracy
 - Percentage of correctly classified instances (the higher the better)
 - Inverse: Error rate (percentage of incorrectly classified instances)
- Accuracy is nice, but not enough
 - When improving systems, we want to compare our accuracy with the previous accuracy
 - When developing new systems, we want to know how difficult the task is
 - E.g., 60% accuracy when distinguishing 35 parts of speech is better than 60% accuracy when distinguishing nouns and all the rest

Baseline

Baseline

Baseline

Baseline

- Example 1: Gender of students in Stuttgart and Cologne
 - Task: Classify students according to their gender
 - Data
 - Stuttgart: 8585 of 25705 students are female
 - Cologne: 29793 of 48841 students are female
 - ► Majority baseline: Everyone is female (Cologne) or male (Stuttgart)
 - Classification accuracies: 61% / 66.6%

Baseline

Baseline

- Example 1: Gender of students in Stuttgart and Cologne
- Example 2: Gender of arbitrary Germans
 - ► Task: Classify a random German according to their gender
 - male: 40.7m vs. female: 41.8m
 - Random baseline: Toss a coin
 - Classification accuracy: about 50%

Baseline

Baseline

- Example 1: Gender of students in Stuttgart and Cologne
- Example 2: Gender of arbitrary Germans
- Example 3: Detecting nouns
 - Task: Classify words into noun and non-noun
 - Most words are not nouns
 - Majority baseline: Every word is a non-noun
 - Accuracy (in a German text): 81.8%

Formalities and Notation

Why formal language?

Why formal language?

Formal language is concise, exact and unambiguous. Slides will contain both.

► Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$

Why formal language?

- ► Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$
- ► Data objects/instances/items: x ∈ D. x_{class} represents the class label (i.e., the target category)

Why formal language?

- ► Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$
- ► Data objects/instances/items: $x \in D$. x_{class} represents the class label (i.e., the target category)
- Feature set $F = \{f_1, f_2, ..., f_n\}$
 - \triangleright $v(f_i)$ is a set that contains all possible values of a feature
 - ▶ I.e., we know in advance which values a feature can take!

Why formal language?

- ► Data set *D*, split into D_{train} and D_{test} $D_{train} \cup D_{test} = D$
- ► Data objects/instances/items: $x \in D$. x_{class} represents the class label (i.e., the target category)
- Feature set $F = \{f_1, f_2, ..., f_n\}$
 - \triangleright $v(f_i)$ is a set that contains all possible values of a feature
 - ► I.e., we know in advance which values a feature can take!
- Feature extractor $f_i(x)$ represents the value of f_i for x

Section 3

Decision Trees

Decision Trees

Prediction Model - Toy Example

Decision Trees

Prediction Model – Toy Example

What are the instances?

Decision Trees

Prediction Model - Toy Example

What are the instances?

 Situations we are in (this is not really automatisable)

Decision Trees

Prediction Model - Toy Example

What are the instances?

 Situations we are in (this is not really automatisable)

What are the features?
Decision Trees

Prediction Model - Toy Example

What are the instances?

- Situations we are in (this is not really automatisable)
- What are the features?
 - Consciousness
 - Clothing situation
 - Promises made

. . .

Whether we are driving

13/34

Decision Trees

Trees

Well-established data structure in CS

Decision Trees

Trees

- Well-established data structure in CS
- A tree is a pair that contains
 - some value and
 - a (possibly empty) set of children
 - Children are also trees

Decision Trees

Trees

Well-established data structure in CS
A tree is a pair that contains
some value and
a (possibly empty) set of children
Children are also trees
Formally: (v, {(w, Ø), (u, {(s, Ø)})})

Decision Trees

Trees

Well-established data structure in CS
A tree is a pair that contains

some value and
a (possibly empty) set of children
Children are also trees
W u

Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {⟨s, ∅⟩}⟩⟩⟩
Recursive definition: "A tree is something and a bunch of sub trees"
Recursion is an important ingredient in many algorithms and data structures

Decision Trees

Trees

- Well-established data structure in CS
 A tree is a pair that contains

 some value and
 a (possibly empty) set of children
 Children are also trees
 Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {⟨s, ∅⟩}⟩⟩⟩
 Recursive definition: "A tree is something and a bunch of sub trees"
 Recursion is an important ingredient in many algorithms and data structures
- ► If the tree has labels on the edges, the pair becomes a triple

 $\blacktriangleright \langle v, I_v, \{ \langle w, I_w, \emptyset \rangle, \langle u, I_u \{ \langle s, I_s, \emptyset \rangle \} \rangle \} \rangle$

Decision Trees

Trees

- Well-established data structure in CS. A tree is a pair that contains some value and a (possibly empty) set of children Children are also trees w Formally: $\langle v, \{\langle w, \emptyset \rangle, \langle u, \{\langle s, \emptyset \rangle\} \} \rangle$ Recursive definition: "A tree is something and a bunch of sub trees" Recursion is an important ingredient in many algorithms and data structures If the tree has labels on the edges, the pair becomes a triple
 - $\langle v, I_v, \{\langle w, I_w, \emptyset \rangle, \langle u, I_u \{\langle s, I_s, \emptyset \rangle\} \rangle \}$

Decision Trees

Prediction Model

- Each non-leaf node in the tree represents one feature
- Each leaf node represents a class label
- Each branch at this node represents one possible feature value
 - Number of branches = $|v(f_i)|$ (number of possible values)

Decision Trees

Prediction Model

- Each non-leaf node in the tree represents one feature
- Each leaf node represents a class label
- Each branch at this node represents one possible feature value
 - Number of branches = $|v(f_i)|$ (number of possible values)
- Make a prediction for x:
 - 1. Start at root node
 - 2. If it's a leaf node
 - assign the class label
 - 3. Else
 - Check node which feature is to be tested (f_i)
 - Extract $f_i(x)$
 - Follow corresponding branch
 - Go to 2

Decision Trees

Example Task

- ► *D*_{train}: A deck of 12 playing cards (selected out of 52)
- ► Target classes: Their symbols ♣♠◊♡

(obvious to humans, but needs to be made explicit for the computer)

Features

- f_1 : Does it show a number? $v(f_1) = \{0, 1\}$
- f_2 : Is it black or red? $v(f_2) = \{b, r\}$
- f_3 : Is it even, odd, or a face card? $v(f_3) = \{e, o, f\}$
- Features can be extracted automatically

Disclaimer: This task is artificial, because there is no connection between features and target classes in a full deck (features are evenly distributed).

Decision Trees

Example Task

Figure: Example Prediction Model. The model is entirely made up and is not expected to perform well, but it can be used for classification right away.

Decision Trees

Learning Algorithm

- Core idea: The tree represents splits of the training data
 - 1. Start with the full data set D_{train} as D
 - 2. If *D* only contains members of a single class:
 - Done.
 - 3. Else:
 - Select a feature f_i
 - Extract feature values of all instances in D
 - Split the data set according to $f_i: D = D_v \cup D_w \cup D_u \dots$
 - Go back to 2
- Remaining question: How to select features?

Decision Trees

Feature Selection

What is a good feature?

One that maximizes homogeneity in the split data set

Decision Trees

Feature Selection

- What is a good feature?
 - One that maximizes homogeneity in the split data set
- "Homogeneity"
 - Increase

$$[\clubsuit \clubsuit \clubsuit \heartsuit \} = \{ \heartsuit \} \cup \{ \clubsuit \clubsuit \clubsuit \}$$

No increase

$$\{ \bigstar \spadesuit \clubsuit \heartsuit \} = \{ \blacklozenge \} \cup \{ \clubsuit \clubsuit \heartsuit \}$$

Decision Trees

Feature Selection

- What is a good feature?
 - One that maximizes homogeneity in the split data set
- "Homogeneity"
 - Increase
 - $\{ \clubsuit \clubsuit \diamondsuit \} = \{ \heartsuit \} \cup \{ \clubsuit \clubsuit \} \leftarrow \text{better split!}$
 - No increase

 $\{ \bigstar \spadesuit \clubsuit \heartsuit \} = \{ \clubsuit \} \cup \{ \clubsuit \clubsuit \heartsuit \}$

Homogeneity: Entropy/information

Shannon (1948)

Decision Trees

Feature Selection

- What is a good feature?
 - One that maximizes homogeneity in the split data set
- "Homogeneity"
 - Increase
 - $\{ \clubsuit \clubsuit \diamondsuit \} = \{ \heartsuit \} \cup \{ \clubsuit \clubsuit \rbrace \} \leftarrow \text{better split!}$
 - No increase

 $\{ \bigstar \spadesuit \clubsuit \heartsuit \} = \{ \blacklozenge \} \cup \{ \clubsuit \spadesuit \heartsuit \}$

Homogeneity: Entropy/information

Shannon (1948)

- Rule: Always select the feature with the highest information gain (IG)
 - (= the highest reduction in entropy = the highest increase in homogeneity)

Decision Trees Entropy (Shannon 1948) $H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$ entropy

Examples (with b = 2)

Decision Trees number of classes present in X Entropy (Shannon 1948) relative frequency of the class $H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$ entropy

Examples (with
$$b = 2$$
)

$$H(\{ \clubsuit \clubsuit \clubsuit \}) = -\frac{4}{4} \log_2 \frac{4}{4} = 0$$

$$H(\{ \clubsuit \clubsuit \clubsuit \heartsuit \}) = -\left(\underbrace{\frac{3}{4} \log_2 \frac{3}{4}}_{\bigstar} + \underbrace{\frac{1}{4} \log_2 \frac{1}{4}}_{\heartsuit}\right) = 0.562$$

$$H(\{ \clubsuit \clubsuit \heartsuit \heartsuit \}) = \ldots = 0.693$$

 $b^{y} = x$

Decision Trees

Feature Selection (2)

 $H(\{ \spadesuit \spadesuit \spadesuit \heartsuit \}) = H([3,1])$

 $H(\{ \blacklozenge \blacklozenge \blacklozenge \}) = H([3])$

$$H(\{ \clubsuit \clubsuit \heartsuit \}) = H([3,1])$$

= 0.562

$$H(\{ \blacklozenge \}) = H([1]) = 0$$
$$H(\{ \blacklozenge \diamondsuit) = H([2,1])$$

$$H(\{ \clubsuit\}) = H([1]) = 0$$

$$(1) = 0$$

$$H(\{\heartsuit\}) = H([1]) = 0$$

$$H(\{\heartsuit\}) = H([1]) = 0$$

$$H(\{\heartsuit\}) = H([1]) = 0$$

= 0

$$H(\{\heartsuit\}) = H([1]) = 0$$

$$(\{\heartsuit\}) = H([1]) = 0$$

$$(\{\heartsuit\}) = H([1]) = 0$$

$$= 0.562$$

$$H(\{\heartsuit\}) = H([1]) = 0$$

= 0.637

Decision Trees

Feature Selection (3)

 $H(\{ \bigstar \bigstar \diamondsuit \}) = 0.562 \qquad H(\{ \bigstar \bigstar \heartsuit \}) = 0.562$ $H(\{ \heartsuit \}) = 0 \qquad H(\{ \bigstar \bigstar \circlearrowright \}) = 0$ $H(\{ \bigstar \bigstar \rbrace) = 0 \qquad H(\{ \bigstar \bigstar \heartsuit \}) = 0.637$

$$IG(f_1) = H(\{ \spadesuit \clubsuit \clubsuit \heartsuit\}) - \varnothing (H(\{\heartsuit\}), H(\{ \clubsuit \clubsuit \clubsuit\}))$$

= 0.562 - 0 = 0.562
$$IG(f_2) = H(\{ \clubsuit \clubsuit \heartsuit\}) - \varnothing (H(\{ \clubsuit\}), H(\{ \clubsuit \clubsuit \heartsuit\}))$$

$$= 0.562 - \left(\frac{3}{4}0.637 + \frac{1}{4}0\right)$$

= 0.562 - 0.562 - 0.477 = 0.085

Let's Train a Decision Tree

Initial Situation

$$C = \{ \clubsuit \blacklozenge \Diamond \heartsuit \}$$

$$D_{train} = \{ 7 \clubsuit, A \diamondsuit, Q \diamondsuit, K \bigstar, J \bigstar, 5 \diamondsuit, \\ 8 \diamondsuit, 3 \diamondsuit, 7 \diamondsuit, 3 \heartsuit, 7 \heartsuit, 5 \heartsuit \}$$

Let's Train a Decision Tree

Initial Situation

$$C = \{ \clubsuit \blacklozenge \Diamond \heartsuit \}$$

$$D_{train} = \{ 7 \clubsuit, A \diamondsuit, Q \diamondsuit, K \diamondsuit, J \bigstar, 5 \diamondsuit, \\ 8 \diamondsuit, 3 \diamondsuit, 7 \diamondsuit, 3 \heartsuit, 7 \heartsuit, 5 \heartsuit \}$$

Class	Frequency	%
٨	4	33.3
\diamond	4	33.3
\heartsuit	3	25
÷	1	8.3

Let's Train a Decision Tree

Initial Situation

$$C = \{ \clubsuit \diamondsuit \lozenge \heartsuit \}$$

$$D_{train} = \{ 7 \clubsuit, A \diamondsuit, Q \diamondsuit, K \diamondsuit, J \bigstar, 5 \diamondsuit, \\ 8 \diamondsuit, 3 \diamondsuit, 7 \diamondsuit, 3 \heartsuit, 7 \heartsuit, 5 \heartsuit \}$$

	Class	Frequen	су	%	
	٨		4	33.3	
	\diamond		4	33.3	
	\heartsuit		3	25	
	*		1	8.3	
H(♠ ♠♠	$\diamond \diamond \diamond \diamond \langle$	>♡♡♡♡♣)	=	H([4	,4,3,1]
			=	1.28	6057

Let's Train a Decision Tree

 f_1 : Does it show a number?

▶ Splitting *D* according to *f*₁ yields

- Yes: $\{7\clubsuit, 5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- No: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \diamondsuit\}$
- Intuitively: Is this good?

Let's Train a Decision Tree

 f_1 : Does it show a number?

▶ Splitting *D* according to *f*₁ yields

- Yes: $\{7\clubsuit, 5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- No: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \diamondsuit\}$
- Intuitively: Is this good?
- Calculate entropies

$$H([4,3,1]) = 0.9743148$$

•
$$H([4]) = 0$$

Let's Train a Decision Tree

*f*₁: Does it show a number?

Splitting *D* according to *f*₁ yields

- Yes: $\{7\clubsuit, 5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- No: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \blacklozenge\}$
- Intuitively: Is this good?
- Calculate entropies
 - $\blacktriangleright H([4,3,1]) = 0.9743148$
 - H([4]) = 0
- Weighted average of entropy
 - $\frac{8}{12}H([4,3,1]) + \frac{4}{12}H([4]) = 0.6495432$

*f*₁: Does it show a number?

Splitting *D* according to *f*₁ yields

- Yes: $\{7\clubsuit, 5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- No: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \blacklozenge\}$
- Intuitively: Is this good?
- Calculate entropies
 - $\blacktriangleright H([4,3,1]) = 0.9743148$
 - H([4]) = 0
- Weighted average of entropy
 - $\frac{8}{12}H([4,3,1]) + \frac{4}{12}H([4]) = 0.6495432$
- Calculate information gain for feature f₁

 $IG(f_1) = H([4,4,3,1]) - 0.6495432 = 0.6365142$

*f*₂: Is it black or red?

▶ Splitting *D* according to *f*₂ yields

- $\blacktriangleright \text{ Red: } \{5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- ► Black: $\{7\clubsuit, A\diamondsuit, Q\diamondsuit, K\diamondsuit, J\diamondsuit\}$

▶ Intuitively: Is this good? Better than *f*₁?

f₂: Is it black or red?

Splitting D according to f₂ yields

- Red: $\{5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- ► Black: $\{7\clubsuit, A\diamondsuit, Q\diamondsuit, K\diamondsuit, /\diamondsuit\}$
- ▶ Intuitively: Is this good? Better than *f*₁?
- Calculate entropies
 - $\blacktriangleright H([4,3]) = 0.6829081$
 - $\blacktriangleright H([4,1]) = 0.5004024$

f₂: Is it black or red?

Splitting D according to f₂ yields

- Red: $\{5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- ► Black: $\{7\clubsuit, A\diamondsuit, Q\diamondsuit, K\diamondsuit, J\diamondsuit\}$
- ▶ Intuitively: Is this good? Better than *f*₁?
- Calculate entropies
 - $\blacktriangleright H([4,3]) = 0.6829081$
 - $\blacktriangleright H([4,1]) = 0.5004024$
- Weighted average of entropy
 - $\frac{7}{12}H([4,3]) + \frac{5}{12}H([4,1]) = 0.6068641$

f₂: Is it black or red?

Splitting D according to f₂ yields

- Red: $\{5\diamondsuit, 8\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
- ► Black: $\{7\clubsuit, A\diamondsuit, Q\diamondsuit, K\diamondsuit, J\diamondsuit\}$
- ▶ Intuitively: Is this good? Better than *f*₁?
- Calculate entropies
 - $\blacktriangleright H([4,3]) = 0.6829081$
 - $\blacktriangleright H([4,1]) = 0.5004024$
- Weighted average of entropy
 - $\frac{7}{12}H([4,3]) + \frac{5}{12}H([4,1]) = 0.6068641$
- Calculate information gain for feature f₂

 $IG(f_2) = H([4, 4, 3, 1]) - 0.6068641 = 0.6791933$

- ► Splitting *D* according to *f*₃ yields
 - ▶ Even: {8◊}
 - $\blacktriangleright \text{ Odd: } \{7\clubsuit, 5\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
 - Face: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, / \diamondsuit\}$
- Intuitively: Is this good? Better than f_1 or f_2 ?

- ► Splitting *D* according to *f*₃ yields
 - ▶ Even: {8◊}
 - $\blacktriangleright \text{ Odd: } \{7\clubsuit, 5\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
 - Face: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \diamondsuit\}$
- Intuitively: Is this good? Better than f_1 or f_2 ?
- Calculate entropies

- ► Splitting *D* according to *f*₃ yields
 - ► Even: {8◊}
 - $\blacktriangleright \text{ Odd: } \{7\clubsuit, 5\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
 - Face: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \diamondsuit\}$
- Intuitively: Is this good? Better than f_1 or f_2 ?
- Calculate entropies
 - H([1]) = 0
 - $\blacktriangleright H([1,3,3]) = 1.004242$
 - H([4]) = 0
- Weighted average of entropies
 - $= \frac{1}{12}H([1]) + \frac{7}{12}H([1,3,3]) + \frac{4}{12}H([0]) = 0.5858081$

- ► Splitting *D* according to *f*₃ yields
 - ► Even: {8◊}
 - $\blacktriangleright \text{ Odd: } \{7\clubsuit, 5\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$
 - Face: $\{A \blacklozenge, Q \diamondsuit, K \diamondsuit, J \diamondsuit\}$
- Intuitively: Is this good? Better than f_1 or f_2 ?
- Calculate entropies
 - H([1]) = 0
 - $\blacktriangleright H([1,3,3]) = 1.004242$
 - H([4]) = 0
- Weighted average of entropies
 - ▶ $\frac{1}{12}H([1]) + \frac{7}{12}H([1,3,3]) + \frac{4}{12}H([0]) = 0.5858081$
- Calculate information gain for feature f₃
 - $\blacktriangleright IG(f_3) = H([4,4,3,1]) 0.5858081 = 0.7002492$

Let's Train a Decision Tree

First Feature

Feature	Information gain
<i>f</i> ₁	0.637
f_2	0.679
f_3	0.7
Let's Train a Decision Tree

First Feature

Feature	Information gain
f_1	0.637
f_2	0.679
f_3	0.7

► The algorithm selects *f*³ as the first feature!

Let's Train a Decision Tree

First Feature

Feature	Information gain
f_1	0.637
f_2	0.679
f_3	0.7

- ► The algorithm selects *f*₃ as the first feature!
- Next, we continue recursively with each sub set

Let's Train a Decision Tree

First Feature

Feature	Information gain
$\begin{array}{c} f_1 \\ f_2 \\ f_3 \end{array}$	0.637 0.679 0.7

- ▶ The algorithm selects *f*³ as the first feature!
- Next, we continue *recursively* with each sub set
 {8\$
 - ✓ No further action needed!

$$\blacktriangleright \{7\clubsuit, 5\diamondsuit, 3\diamondsuit, 7\diamondsuit, 3\heartsuit, 7\heartsuit, 5\heartsuit\}$$

- $\blacktriangleright \{A \spadesuit, Q \spadesuit, K \spadesuit, J \spadesuit\}$
 - ✓ No further action needed!

Let's Train a Decision Tree

Final Tree

Figure: Final prediction model

Decision Trees

Summary

- Classification algorithm
- Built around trees, recursive learning and prediction

Pros

- Highly transparent
- Reasonably fast
- Dependencies between features can be incorporated into the model

Cons

- Often not very good
- No pairwise dependencies
- May lead to overfitting
- Only nominal features

Variants exist

Section 4

Evaluation (again)

Precision and Recall

- Accuracy is a single number for the entire classification
- Do some of the classes fare better than others?
- There are two metrics for this: Precision and Recall
 - Both are calculated *per class* (and can be averaged again)

Figure: Identifying true/false positives/negatives

Precision and Recall

- Accuracy is a single number for the entire classification
- Do some of the classes fare better than others?
- There are two metrics for this: Precision and Recall
 - Both are calculated *per class* (and can be averaged again)

Figure: Identifying true/false positives/negatives

Precision and Recall

- Accuracy is a single number for the entire classification
- Do some of the classes fare better than others?
- There are two metrics for this: Precision and Recall
 - Both are calculated *per class* (and can be averaged again)

Figure: Identifying true/false positives/negatives

Evaluation Precision and Recall

true positives Correctly identified items of class *c* true negatives Correctly identified items of other classes false positives System predicts *c*, but it's another class false negatives System predicts something else, but it's *c*

Evaluation Precision and Recall

precision How many of the items predicted as *c* are actually correct? $P = \frac{tp}{tp+fp}$

Evaluation Precision and Recall

precision How many of the items predicted as *c* are actually correct? $P = \frac{tp}{tp+fp}$

recall How many of the items that are *c* are actually identified? $R = \frac{tp}{tp+fn}$

Evaluation

Precision and Recall

precision How many of the items *predicted as c* are actually correct? recall How many of the items that *are in class c* are actually found by the system?

- Precision and recall measure different kinds of errors the systems make
 - Precision errors are often easier to spot for humans
 - Recall errors are hurtful, if only instances of one class are looked at or analyzed – missing instances will never be found
- Average P/R values over all classes are often given
- Sometimes combined into an *f*₁-score
 - $f_1 = 2 \frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}}$
 - 'harmonic mean' between the two